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Abstract
Propagation of electromagnetic plane waves in some directions in
gravitationally affected vacuum over limited ranges of spacetime can be such
that the phase velocity vector casts a negative projection on the time-averaged
Poynting vector. This conclusion suggests, inter alia, gravitationally assisted
negative refraction by vacuum.

PACS numbers: 41.20.Jb, 03.30.+p, 04.40.Nr

1. Introduction

The discovery of (purportedly) isotropic, homogeneous, dielectric-magnetic materials that
bend electromagnetic rays the ‘wrong way’ [1] created quite a stir in 2001 [2], with claims and
counterclaims flying all around [3, 4]. The situation has recently been settled, with unequivocal
demonstrations by several independent groups [5–7]. See [8] for a comprehensive review. A
range of exotic and potentially useful phenomena—such as negative refraction, negative
Doppler shift and inverse C̆erenkov radiation—have been predicted for materials of this type,
wherein the phase velocity is directed in opposition to the energy velocity as quantified through
the time-averaged Poynting vector. These materials have several names, including left-handed
materials, negative-index materials and negative-phase-velocity (NPV) materials. We prefer
the last term [8].

Subsequently, the possibility of NPV propagation of light and other electromagnetic
waves was established in a variety of anisotropic materials [9–11]. In these materials, NPV
propagation is indicated by the projection of the phase velocity on the time-averaged Poynting
vector being negative.
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Even more interestingly, materials that do not permit the observation of NPV propagation
by observers in a relatively stationary (i.e., co-moving) inertial reference frame have been
shown, after the invocation of the postulates of special theory of relativity (STR), to allow
observation of NPV propagation in other inertial frames [12]. That permits one to envisage
STR negative refraction being exploited in astronomical scenarios such as, for example, in
the remote sensing of planetary and asteroidal surfaces from space stations. Quite possibly,
space telemetry technologies will be the first to reap the benefits of STR negative refraction.
Application to remotely guided, extraterrestrial mining and manufacturing industries can also
be envisioned. Furthermore, many unusual astronomical phenomena would be discovered
and/or explained via STR negative refraction to interpret data collected via telescopes [13].

As is well known, vacuum (i.e., matter-free space) appears the same to all inertial
observers [14]. Therefore, as a co-moving observer cannot deduce the occurrence of
NPV propagation in vacuum, neither can any observer moving with a constant velocity.
This could lead one to believe that NPV propagation is impossible in huge expanses of
interstellar space. However, gravitational fields from nearby massive objects will certainly
distort electromagnetic propagation, which is a principal consequence of the general theory of
relativity and is indeed used nowadays in GPS systems. Our objective here is to establish that
gravitationally affected vacuum can support NPV propagation, at least in spacetime manifolds
of limited extent.

2. Theory

A gravitational field curves spacetime, whose effect is captured through a metric gαβ .4

Electromagnetic propagation in gravitationally affected vacuum may be described in terms
of propagation in an instantaneously responding medium in flat spacetime [15, 16], at
least in spacetime manifolds of limited extent. That is, the nonuniform metric gαβ can
be locally approximated by the uniform metric g̃αβ [17]. On assuming the convention
g̃αβ = (+,−,−,−), the constitutive relations of vacuum in the equivalent flat spacetime
are expressed in Gaussian units as [16]

D� = ε�mEm + ε�mng̃mHn, (1)

B� = µ�mHm − ε�mng̃mEn, (2)

where ε�mn is the Levi-Civita tensor, and

ε�m = µ�m = −(−g̃)1/2 g̃�m

g̃00
, (3)

g̃� = g̃0�

g̃00
, (4)

with g̃ = det[g̃αβ]. We note that the metric g̃αβ is real symmetric [18].
The constitutive relations (1) and (2) can be expressed in 3-vector form as

D = ε0γ=
· E − 1

c0
� × H, (5)

B = µ0γ=
· H +

1

c0
� × E, (6)

wherein SI units are implemented. The scalar constants ε0 and µ0 denote the permittivity and
permeability of vacuum in the absence of a gravitational field, respectively, and c0 = √

1/ε0µ0.

4 Roman indices take the values 1, 2 and 3, while Greek indices take the values 0, 1, 2 and 3.
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Our coordinate system is chosen such that the second-rank Cartesian tensor γ
=

is diagonal; i.e.,
γ
=

= diag(γx, γy, γz). In the gravitational field of a mass rotating with angular momentum J ,
the gyrotropic vector � is proportional to R × J , where R is the radial vector from the centre
of mass to the point of observation. By considering a small region of space at a sufficiently
remote location from the centre of mass, we take � to be independent of R.

We seek planewave solutions

E = Re{E0 exp[i(k · r − ωt)]}, (7)

H = Re{H 0 exp[i(k · r − ωt)]}, (8)

to the source-free Maxwell curl postulates

∇ × E +
∂

∂t
B = 0, (9)

∇ × H − ∂

∂t
D = 0. (10)

Here k is the wave vector, r is the position vector, ω is the angular frequency and t denotes the
time; whereas E0 and H 0 are complex-valued amplitudes.

An eigenvector equation for E0 is developed as follows. By combining (5)–(8) with the
Maxwell curl postulates, we derive

p × E0 = ωµ0γ=
· H 0, (11)

p × H 0 = −ωε0γ=
· E0, (12)

in terms of

p = k − ω�. (13)

The use of (11) to eliminate H 0 from (12) provides, after some simplification,

W
=

· E0 = 0, (14)

where

W
=

= (
k2

0 det[γ
=

] − p · γ
=

· p
)
I

=
+ p p · γ

=
, (15)

and the notation k0 = ω
√

ε0µ0 has been introduced. A dispersion relation thus emerges from
(14) as

det[W
=

] = 0, (16)

which may be expressed in the form

k2
0 det[γ

=
]
(
k2

0 det[γ
=

] − p · γ
=

· p
)2 = 0. (17)

Hence, we conclude that planewave solutions satisfy the condition

p · γ
=

· p = k2
0 det[ γ

=
]. (18)

Let us consider eigenvector solutions to (14). Substitution of (18) into (14) provides

p p · γ
=

· E0 = 0; (19)

thereby, all eigenvector solutions are necessarily orthogonal to p · γ
=

. To proceed further, let
us—without any loss of generality—choose the wave vector k to lie along the z axis, and the
vector � to lie in the xz plane; i.e.,

k = kûz, (20)
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� = �(ûx sin θ + ûz cos θ), (21)

where ûx, ûy and ûz are the Cartesian unit vectors in the equivalent flat spacetime. Since

p · γ
=

= −ω�γx sin θûx + (k − ω� cos θ)γzûz, (22)

it is clear that two linearly independent eigenvectors satisfying (18) may be stated as

e1 = ûy, (23)

e2 = ûy × (p · γ
=
) (24)

= (k − ω� cos θ)γzûx + ω�γx sin θûz. (25)

After assuming that γ
=

is invertible, we deduce the corresponding magnetic field eigenvectors
from (11) as

h1 = 1

ωµ0
γ
=

−1 · [(ω� cos θ − k)ûx − ω� sin θûz], (26)

h2 = 1

ωµ0
γ
=

−1 · [(k − ω� cos θ)2γz + (ω� sin θ)2γx]ûy . (27)

Hence, the general solution is given by

E0 = C1ûy + C2[(k − ω� cos θ)γzûx + ω�γx sin θûz], (28)

H 0 = 1

ωµ0
γ
=

−1 · {C1[(ω� cos θ − k)ûx − ω� sin θûz] + C2[(k − ω� cos θ)2γz

+ (ω� sin θ)2γx]ûy}, (29)

wherein C1 and C2 are arbitrary constants.
The wave numbers arise from the dispersion relation (17) as follows. Substituting (13)

into (18), we obtain the k-quadratic expression

k2γz − 2kγzω� cos θ + ω2�2(γx sin2 θ + γz cos2 θ) − k2
0 det[γ

=
] = 0, (30)

since k · � = k� cos θ . The two k-roots of (30) are

k+ = ω

(
� cos θ +

√
ε0µ0γxγy − γx

γz

�2 sin2 θ

)
, (31)

k− = ω

(
� cos θ −

√
ε0µ0γxγy − γx

γz

�2 sin2 θ

)
. (32)

Finally, let us consider the time-averaged Poynting vector given by

P = 1
2 Re{E0 × H ∗

0}. (33)

After utilizing the general solution (28) and (29), the component of the Poynting vector aligned
with the ûz axis is obtained as

ûz · P = 1

2ωµ0γz

(k − ω� cos θ)(|C1|2 + |C2|2γzω
2 det[γ

=
]). (34)

The energy density flow in the direction of the wave vector k+, corresponding to the root
k+ given in (31), is thus

k+ · P = 1

2µ0γz

[
� cos θ

√
ε0µ0γxγy − γx

γz

�2 sin2 θ

+

(
ε0µ0γxγy − γx

γz

�2 sin2 θ

)]
× (|C1|2 + |C2|2γzω

2 det[γ
=

]). (35)
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Let us note that the inequality

ε0µ0γxγy − γx

γz

�2 sin2 θ � 0 (36)

must be fulfilled in order for k to be real-valued. Therefore, the defining inequality for NPV
propagation, namely

k+ · P < 0, (37)

is satisfied provided that

−� cos θ <

√
ε0µ0γxγy − γx

γz

�2 sin2 θ (38)

holds. Analogously, we find that NPV propagation is signalled for the k− wave number by
the condition

� cos θ <

√
ε0µ0γxγy − γx

γz

�2 sin2 θ. (39)

In deriving (38) and (39), we used the fact that γx,y,z < 0 by virtue of the signature of g̃αβ .
We note that the NPV conditions (38) and (39) are independent of frequency.

3. Concluding remarks

The inequalities (38) and (39) can be satisfied for specific ranges of the angle θ , for given
γ
=

and �. Thus, we have shown that NPV propagation in some directions is possible in
gravitationally affected vacuum over limited ranges of spacetime. The possible existence of
gravitational fields which can deliver γ

=
and � necessary for the satisfaction of (38) and/or (39)

is a matter for astrophysicists to discuss.
We are content here to state that, just as scientific and technological applications of STR

negative refraction (by materials) can be envisaged [12, 13], similar and different consequences
of gravitationally assisted negative refraction by vacuum are possible. In particular, designers
of channels for space communication shall also have to account for the possibility of negative
refraction due to massive objects between the two ends of every channel.

Furthermore, current ideas on the distribution of mass in the as-observed universe may
require significant revision, since electromagnetic signals from distant objects may be deflected
in a manner which has not hitherto been accounted for. Thus, our work has implications
for gravitational lenses [19]. Gravitational lensing involves nonuniform metrics, and the
distribution of matter in the universe has been constantly changing. While the spatiotemporally
local evolution of the universe may be deduced adequately from electromagnetic signals
received by our telescopes, reasonably accurate deductions about the spatiotemporally global
evolution of the universe from similar measurements may be particularly difficult to make—
owing to gravitationally assisted negative refraction.

Finally, our work suggests that research on the consequences of gravitationally assisted
negative refraction by materials should now be undertaken.
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